Research Group in Iron Metabolism: Regulation and Diseases

The Research Group in Iron Metabolism: Regulation and Diseases is a senior interdisciplinary group with extensive experience in translational medicine in the field of iron metabolism and in the study of other hereditary haematological diseases. The purpose of the group is to increase knowledge of iron metabolism, its regulation and associated diseases, and to promote the diagnosis of hereditary haematological diseases. To this end, the spin-off BLOODGENETICS SL  was created in November 2016. The group has also contributed to the implementation of telemedicine tools to facilitate the diagnosis and management of patients with inherited haematological diseases such as congenital dyserythropoietic anaemia (CODYSAN) and the diagnosis and management of patients with hyperferritinemia (HIGHFERRITIN). We have also contributed to the publication of two clinical guidelines.

Our group is an enthusiastic and dynamic laboratory that applies cutting-edge technology to translational medicine in haematology, RNA biology, genetics and iron metabolism, using molecular and cellular biology techniques and working in vitro, in silico, with tissue cultures, in vivo (mouse models) and with patient samples. We have a wide network of hospitals and national and international collaborators with which to study human samples (paediatric and adult).

The group’s scientific activity has been supported by numerous prestigious international publications, participation in congresses and our capacity for research training.

The group’s main challenges are:

  1. The in silico, in vitro and in vivo study of new mRNAs regulated by IRPs (iron regulatory proteins, IRP1 and IRP2).
  2. The discovery of new diseases related to hereditary haematological diseases and iron metabolism diseases through sequencing studies with t-NGS panels and WES / WGS studies.
  3. To improve the diagnosis and treatment of hereditary haematological diseases and diseases related to iron metabolism, through the transfer of technology to the company BLOODGENETICS SL (spin-off co-founded by Dr M Sanchez).
  4. To promote new therapeutic strategies in hereditary haematological diseases and diseases related to iron metabolism
  5. To improve the management and medical diagnosis of hereditary haematological diseases and diseases related to iron metabolism, through the creation of telemedicine tools such as the online applications HIGHFERRITIN and CODYSAN and through the publication of clinical guidelines.
  6. To increase the social and medical awareness of inherited haematological diseases and iron-related diseases by supporting and promoting patient associations such as APUAEHEFAPH and ADISCON.


• Dr Mayka Sánchez Fernández


  • Sr. Ferran Celma Nos
  • Dra. Veronica Venturi
  • Dra. Xenia Ferrer Cortés
  • Dr. Gonzalo Hernández Viedma
  • Sra. Lidia Romero Cortadellas
  • Sr. Daniel Jové Solavera

Line of research

  • Research on iron metabolism and hereditary haematological diseases
  • Objectives
  • Publications

The molecular, cellular, genetic and physiopathological study of iron metabolism and other hereditary haematological diseases. At present, the research sublines are as follow:

  • Genetic diagnosis of iron metabolism-related diseases and other hereditary haematological diseases through the use of NGS panels in partnership with the companies BLOODGENETICS and WHOLE GENIX SL.
  • Discovery and functional characterisation of new mutations in iron metabolism-related diseases and other hereditary haematological diseases.
  • Discovery and functional characterisation of new diseases related to iron metabolism and other inherited haematological diseases through WES and WGS.
  • Development of telemedicine tools to improve the diagnosis and management of patients with inherited haematological diseases and diseases related to iron metabolism (examples of online applications developed by our group are: HIGHFERRITIN: and CODYSAN).
  • Discovery of new mRNAS regulated by IRPs through molecular and cellular studies in cell lines and in vitro and in vivo studies.
  • Development and improvement of bioinformatic tools for predicting mRNA elements named Iron Responsive Elements or IREs (SIREs webpage).

Total publications: 59 (40 peer-reviewed publications +7 divulg+12 book chapters)

  • Total peer-reviewed publications: 40 (12 as 1st author, 11 as last author) (23 as an independent group, 8 as postdoc, 9 as predoc)
  • Publications as an independent group (group created in Nov 2009): 23
  • Publications as last author or co-corresponding author: 11
  • Number of 1st decile publications (D1): 19/39 (48.7%)
  • Number of 1st quartile publications (Q1): 26/39  (72.2%)
  • H-index: 21 (Google Scholar, Jun 2021)
  • i-10 Index: 29 (Google Scholar, Jun 2021)
  • Total citations: 1,823 (as of Jun 2020, Google Scholar)
  • Other publications: Book chapters: 12; Informative medical publications: 7 


  • Celma-Nos F*, Hernández G*, Ferrer‐Cortès X, Hernandez‐Rodriguez I, Navarro‐Almenzar B, Fuster J.L., Mar Bermúdez-Cortés M 5, Pérez‐Montero S, Tornador C,  Sanchez M. Hereditary Hyperferritinemia Cataract Syndrome: Ferritin L Gene and Physiopathology behind the Disease—Report    of New Cases.   International Journal of Molecular Sciences. Int J Mol Sci. 2021. 22(11), 5451. doi: 10.3390/ijms22115451. PMID: 34064225; PMCID: PMC8196845.

  • Ducamp S*, Luscieti S*, Ferrer-Cortès X, Nicolas G, Manceau H, Peoc’h K, Yien YY, Kannengiesser C, Gouya L, Puy H** and Sanchez M**. A mutation in the Iron-Responsive Element of ALAS2 is a modifier of disease severity in a patient suffering from CLPX associated Erythropoietic Protoporphyria. Haematologica. 2021 Feb 18. doi: 10.3324/haematol.2020.272450. Epub ahead of print. PMID: 33596641.


  • Tornador C, Sánchez-Prados E, Cadenas B, Russo R, Venturi V, Andolfo I, Hernández-Rodriguez I, Iolascon A, Sanchez M. CoDysAn: A telemedicine tool to improve awareness and diagnosis for patients with Congenital Dyserythropoietic Anemia. Frontiers in Physiology 2019; 10:1063 . doi: 10.3389/fphys.2019.01063. 10:1063. JCR-Science Edition  - 2017 - 3.394. PHYSIOLOGY - Q1 T1 20/83
  • Cadenas B, Fita-Torró J, Bermúdez-Cortés M, Hernandez-Rodriguez I, Fuster JL, Linares ME, Galera AM, Romero JL, Pérez-Montero S, Tornador C, Sanchez M. L-Ferritin, one gene - five diseases; from hereditary hyperferritinaemia to hypoferritinaemia. Report of new cases. Pharmaceuticals (Basel). 2019 Jan 23;12(1). pii: E17. 


  • Riley LG, Heeney MM, Rudinger-Thirion J, Frugier M, Campagna DR, Zhou R, Hale GA, Hilliard LM, Kaplan JA, Kwiatkowski JL, Sieff CA, Steensma DP, Rennings A, Simons A, Schaap M, Richard Roodenburg R, Kleefstra T, Arenillas L, Fita-Torró J, Ahmed R, Abboud M, Bechara E, Farah R, Tamminga RYJ, Bottomley SS, Sanchez M, Swinkels DW, Christodoulou J, Fleming MD. The phenotypic spectrum of germline YARS2 variants: from isolated sideroblastic anemia to mitochondrila myopathy, lactic acidosis and sideroblastic anemia. Haematologica 2018. IF in 2017: 9.090, Q1. D1. Category: HEMATOLOGY. Cites: 1 (Google Scholar Nov 2018).
  • Adams P, Altes A, Brissot P, Butzeck B, Cabantchik I, Cançado R, Distante S, Evans P, Evans R, Ganz T, Girelli D, Hultcrantz R, McLaren G, Marris B, Milman N, Nemeth E, Nielsen P, Pineau B, Piperno A, Porto G, Prince D, Ryan J, Sanchez M, Santos P, Swinkels D, Teixeira E, Toska K, Vanclooster A, White D; Contributors and Hemochromatosis International Taskforce. Therapeutic recommendations in HFE hemochromatosis for p.Cys282Tyr (C282Y/C282Y) homozygous genotype. Hepatol Int. 2018 Mar;12(2):83-86. doi: 10.1007/s12072-018-9855-0. Epub 2018 Mar 27. PubMed PMID: 29589198. Authors in alphabetical order. IF 2017: 4.117, Q2. Category: GASTROENTEROLOGY & HEPATOLOGY. Cites: 1 (Google Scholar Nov 2018). 


  • Van de Sompele S, Pécheux L, Couso J, Meunier A, Sanchez M*, De Baere E*. Functional characterization of a novel non-coding mutation “Ghent +49A>G” in the iron-responsive element of L-ferritin causing hereditary hyperferritinaemia-cataract síndrome. Scientific Report 2017 Dec 21;7(1):18025.  *Last co-corresponding author. Q1. IF: 4.122. Category: MULTIDISCIPLINARY SCIENCES. Cites: 0 (Google Scholar Nov 2018).
  • Luscieti S, Galy B, Gutierrez L, Reinke M, Couso J, Shvartsman M, Di Pascale A, Witke W, Hentze M.W., Pilo Boyl P, Sanchez M. The actin binding protein profilin 2 is a novel regulator of iron homeostasis. Blood, 2017 Oct 26;130(17):1934-1945. doi: 10.1182/blood-2016-11-754382. Epub 2017 Aug 3. IF: 15.132, D1. Cites: 5 (Google Scholar Nov 2018). 


  • Andreas Engert, Carlo Balduini, Anneke Brand, Bertrand Coiffier, Catherine Cordonnier, Hartmut Döhner, Thom Duyvené de Wit, Sabine Eichinger, Willem Fibbe, Tony Green, Fleur de Haas, Achille Iolascon, Thierry Jaffredo, Francesco Rodeghiero, Gilles Salles, Jan Jacob Schuringa, Carin Smand, and remaining EHA Roadmap for European Hematology Research authors. The European Hematology Association Roadmap for European Hematology Research. A Consensus Document.  Haematologica 2016. Feb;101(2):115-208. doi: 10.3324/haematol.2015.136739. Epub 2016 Jan 27. IF: 7,702, Q1. D1. Cites: 28 (Google Scholar Nov 2018). 


  • Joshi R*, Shvartsman M*, Morán E, Lois S, Aranda J, Barqué A, de la Cruz X, Bruguera M, Vagace JM, Gervasini G, Sanz C, Sánchez M. Functional consequences of transferrin receptor-2 mutations causing Hereditary Hemochromatosis type 3. Molecular Genetics & Genomic Medicine 2015 May;3(3):221-32. doi: 10.1002/mgg3.136. Epub 2015 Mar 6. IF: 2.622. Q2. Category: GENETICS & HEREDITY, Cites: 9 (Google Scholar Nov 2018).


  • De FalcoL, Silvestri L, Kannengiesser C, Morán E, Oudin C, Rausa M, Bruno M, Aranda J, Argiles B, Yenicesu I, Falcon-Rodriguez M, Yilmaz-Keskin E, Kocak U, Beaumont C, Camaschella C, Iolascon A, Grandchamp B, Sanchez M. Functional and clinical impact of novel TMPRSS6 mutations in Iron-Refractory Iron-Deficiency Anaemia patients and genotype-phenotype studies. Hum Mutat. 2014 35(11):1321-9 doi: 10.1002/humu.22632. IF: 5.340, Q1. 26/164 Category: Genetics and Heredity. Cites: 29 (Google Scholar Nov 2018)
  • Teixeira E, Borlido-Santos J, Brissot P, Butzeck B, Courtois F, Evans RW, Fernau J, Nunes JA, Mullett M, Paneque M, Pineau B, Porto G, Sorrill R, Sanchez M, Swinkels DW, Toska K, Varkonyi J; the EFAPH, the European Federation of Associations of Patients with Haemochromatosis. The importance of the general practitioner as an information source for patients with hereditary haemochromatosis. Patient Educ Couns. 2014; 96 (1), 86-92. IF: 2,598 (2013 JCR), Q1. D1. 8/98 Category: SOCIAL SCIENCES, INTERDISCIPLINARY. Cites: 5 (Google Scholar Nov 2018)
  • Tzou W-S, Chu Y, Lin T-Y, Hu C-H, Pai T-W, Liu H-F, Lin H-J, Cases I, Rojas A, Sanchez M, You Z-Y, Hsu M-W. Molecular Evolution of Multiple-Level Control of Heme Biosynthesis Pathway in Animal Kingdom. PLoS ONE 2014 9(1): e86718. IF: 3.234. Q1 8/55 Multidisciplinary Sciences. Cites: 1 (Google Scholar Nov 2018)
  • Altés A, Pérez-Lucena MJ, Bruguera M en representación de la Comisión de Hiperferritinemia del Grupo Ibérico de Ferropatología* (Componentes de la Comisión de Hiperferritinemia del Grupo Ibérico de Ferropatología, co-autores de este trabajo: Rosario López R, Ruiz MA, Torres M, Sanchez M, Félez J, Beneitez D, Matute MF, Remacha A, Sanz C). Systematic approach to the diagnosis of hyperferritinemia. Medicina Clinica (Barc) 2014 May 6;142(9):412-7. doi: 10.1016/j.medcli.2013.06.010. IF: 1.417. Category: MEDICINE, GENERAL & INTERNAL Q2. Cites: 14 (Google Scholar Nov 2018). 


  • Athiyarath R, Arora N, Fuster F, Schwarzenbacher R, Ahmed R, George B, Chandy M, Srivastava A, Rojas AM, Sánchez M, Edison ES. Two Novel Missense Mutations in Iron Transport Protein Transferrin Causing Hypochromic Microcytic Anaemia and Haemosiderosis: molecular characterisation and structural implications. Brit J Haematol  2013 Nov;163(3):404-407. IF: 4.959. Q1. 11/68 Category: HEMATOLOGY . Cites: 9 (Google Scholar Nov 2018)
  • De Falco L*, Sánchez M*, Silvestri L, Kannengiesser C, Muckenthaler MU, Iolascon A, Gouya L, Camaschella C, Beaumont C. Iron Refractory Iron Deficiency Anemia. Haematologica 2013 Jun;98(6):845-53. doi: 10.3324/haematol.2012.075515. IF: 5.868. *equal contributor authors.Q1. D1 5/68 Category: HEMATOLOGY. Cites: 108 (Google Scholar Nov 2018)
  • Luscieti S, Tolle G, Aranda J, Benet-Campos C, Risse F, Morán E, Muckenthaler MU, Sánchez M. Novel mutations in the Ferritin-L iron-responsive element that only mildly impair IRP binding cause Hereditary Hyperferritinaemia Cataract Syndrome. Orphanet Journal of Rare Diseases 2013. Feb 19;8(1):30. IF: 3.958. Q1. 25/122 Category: MEDICINE, RESEARCH & EXPERIMENTAL. Cites: 24 (Google Scholar Nov 2018) 


  • Liu Z, Lanford R, Mueller S, Gerhard GS, Luscieti S, Sánchez M, Devireddy L. Siderophore-mediated iron trafficking in humans is regulated by iron. Journal of Molecular Medicine 2012 Oct;90(10):1209-21. Epub 2012 Apr 15. IF: 4.768 Q1. Cites: 14 (Google Scholar Nov 2018) 


  • Sánchez M, Galy B, Schwanhaeusser B, Blake J, Bähr-Ivacevic T, Benes V, Selbach M, Muckenthaler MU and Hentze MW. Iron regulatory protein-1 and -2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by IRPs. Blood 2011 Nov 24;118(22):e168-79. Epub 2011 Sep22. IF: 9.898. Q1. D1. Cites: 68 (Google Scholar Nov 2018)
  • Rodrigues PN, Gomes SS, Neves JV, Gomes-Pereira S, Correia-Neves M, Nunes-Alves C, Stolte J, Sanchez M, Appelberg R, Muckenthaler MU, Gomes MS. Mycobacteria-induced anaemia revisited: a molecular approach reveals the involvement of NRAMP1 and lipocalin-2, but not of hepcidin. Immunobiology.  2011 Oct;216(10):1127-34. Epub 2011 Apr 20. PubMed PMID: 21601942. IF: 3.205. Q1. Cites: 24 (Google Scholar Nov 2018)
  • Kannengiesser C*, Sanchez M*, Sweeney M*, Hetet G, Kerr B, Moran E, Fuster-Soler JL, Maloum K, Matthes T, Oudot C, Lascaux A, Pondarré C, Sevilla-Navarro J, Vidyatilake S, Beaumont C, Grandchamp B, May A. Missense SLC25A38 gene variations play an important role in autosomal recessive inherited sideroblastic anaemia.*equal contributor authors. Haematologica. 2011 Jun;96 (6):808-13. Epub 2011 Mar 10. PubMed PMID: 21393332. IF: 6.424. Q1. D1. Cites: 38 (Google Scholar Nov 2018). This manuscript led to the Editorial article by Cazzola M. and Invernizzi R. entitled: Ring sideroblasts and sideroblastic anemias in Haematologica. 2011 Jun:96 (6):789-792. 


  • Campillos M, Cases I, Hentze MW, Sánchez M. SIREs: Searching for Iron-Responsive Elements. Nucleic Acids Research  2010 Jul 1;38 (Web Server Issue)W360-7. Epub 2010 May 11. PubMed PMID: 20460462. IF: 7.836. Q1. Cites: 52 (Google Scholar Nov 2018).
  • Vainshtein Y, Sánchez M, Brazma A, Hentze MW, Dandekar T, Muckenthaler MU. The IronCip Evaluation Package: A package of Perl modules for robust analyisis of custom microarrays. BMC Bioinformatics 2010, 11:112. IF: 3.028. Q2. Cites: 5 (Google Scholar Nov 2018) 


  • Ramsay AJ, Quesada V, Sánchez M, Garabaya C, Sardà MP, Baiget M, Remacha A, Velasco G, López-Otín C. Matriptase-2 mutations in iron-refractory iron deficiency anemia patients provide new insights into protease activation mechanisms. Human Molecular Genetics. 2009 Oct 1;18(19):3673-83. Epub 2009 Jul 10. PubMed PMID: 19592582. IF: 7.386. Q1. D1. Cites: 69 (Google Scholar Nov 2018) 


  • Sánchez M, Galy B, Hentze MW., and Muckenthaler MU. Identification of target mRNAs of regulatory RNA binding proteins using mRNP immunopurification and microarrays. Nature Protocols 2007, 2(8):2033-2042. IF: 1.671. Q1. D1. Cites: 14 (Google Scholar Nov 2018)
  • Percy MJ*, Sánchez M*, Swierczek S*, McMullin MF, Mojica-Henshaw MP, Martina U Muckenthaler MU, Prchal JT, and Hentze MW. Is congenital Secondary Erythrocytosis/Polycythemia caused by activating mutations within the HIF-2〈 iron responsive element? Blood 2007; 110(7):2776-2777. * equal contribution authors. PubMed PMID: 17881647. IF : 10.896. Q1. D1. Cites: 4 (Google Scholar Nov 2018)
  • Sánchez M, Galy B, Muckenthaler MU, and Hentze MW. Iron-regulatory proteins limit hypoxia-inducible factor 2α expression in iron deficiency. Nature Structural & Molecular Biology. 2007 ;14(5):420-426. PubMed PMID: 17417656. IF : 11.085. Q1. D1. Cites: 228 (Google Scholar Nov 2018) 


  • Sánchez M, Galy B, Dandekar T, Bengert P, Vainshtein Y, Stolte J, Muckenthaler MU, and Hentze MW. Iron regulation and the cell cycle: Identification of an Iron-Responsive Element in the 3’ unstranslated region of human CDC14A mRNA by a refined microarray-based screening strategy. Journal of Biological Chemistry 2006; 281(32):22865-74. PubMed PMID: 16760464. IF : 5.808. Q1. Cites: 94 (Google Scholar Nov 2018) 


  • Roy CN, Custodio AO, de Graaf J, Schneider S, Akpan I, Montross LK, Sánchez M, Gaudino A, Hentze MW, Andrews NC and Muckenthaler M. An Hfe-dependent pathway mediates hyposideremia in response to lipopolysaccharide-induced inflammation in mice. Nature Genetics 2004 ;36(5):481-5. IF: 24.695. Q1. D1. Cites: 133 (Google Scholar Nov 2018)
  • Oliva R, Novials A, Sánchez M, Villa M, Ingelmo M, Recasens M, Ascaso C, Bruguera M, Gomis R. The HFE gene is associated to an earlier age of onset and to the presence of diabetic nephropathy in diabetes mellitus type 2. Endocrine 2004 ;24(2):111-4. IF: 1.515. Q4. Cites: 10 (Google Scholar Nov 2018) 


  • Sánchez M, Villa M, Ingelmo M, Sanz C, Bruguera M, Ascaso C, Oliva R. Population screening for hemochromatosis: a study in 5370 Spanish blood donors. Journal of Hepatology 2003; 38(6):745-50. IF : 5.283. Q1D1. Cites: 60 (Google Scholar Nov 2018) 


  • Sánchez M, Bruguera M, Rodés J, Oliva R. Complete characterization of the 3’ region of the human and mouse hereditary hemochromatosis HFE gene and dectection of novel splicing forms. Blood Cells, Molecules and Diseases 2001; 27 (1): 35-43. IF : 1.703. Q2. Cites: 25 (Google Scholar Nov 2018). 


  • Sánchez M, Bruguera M, Quintero E, Barrio Y, Mazzara R, Rodés J, Oliva R. Hereditary Hemochromatosis in Spain. Genetic Testing 2000; 4 (2):171-6. IF : 1.893. Q3. Cites: 20 (Google Scholar Nov 2018)
  • Oliva R, Bruguera M, Sánchez M, and Rodés J. Utilidad clínica de la detección de mutaciones del gen HFE en la hemocromatosis. Gastroenterol Hepatol 2000; 23: 433-435. Q4. 


  • Sánchez M, Bruguera M, Bosch J, Rodés J, Ballesta F and Oliva R. Prevalence of the Cys282Tyr and His63Asp HFE gene mutations in Spanish patients with hereditary hemochromatosis and in controls. Journal of Hepatology 1998; 29: 725-728. IF: 3.189. Q1. D1. Cites: 119 (Google Scholar Nov 2018)
  • Sánchez M, Queralt R, Bruguera M, Bosch J, Rodés J, and Oliva R. Cloning, sequencing and characterization of the rat HFE promoter. Comparison of the human, mouse and rat hemochromatosis HFE promoter regions. Gene 1998; 225: 77-87. IF: 2.007. Q3 Cites: 28 (Google Scholar Nov 2018).
  • Margarit E, Guillem A, Rebordosa C, Vidal-Taboada JM, Sánchez M, and Oliva R. Identification of conserved potentially regulatory sequences of the SRY gene from different species of mammals. Biochemical and Biophysical Research Communication 1998; 245: 370-377. IF: 2.780. Q2. Cites: 60 (Google Scholar Nov 2018).
  • Vidal-Taboada JM, Bergoñón S, Sánchez M, López-Acebo C, Groet J, Nizetic D, Egeo A, Scartezzini P, Katsanis N, Fisher EMC, Delabar JM and Oliva R. High resolution mapping and identification of transcribed sequences in the Down Syndrome region-2. Biochemical and Biophysical Research Communication 1998; 243: 572-578. IF: 2.780. Q2. Cites: 11 (Google Scholar Nov 2018).